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Abstract—In this paper, we present a spatial spectral hyper-
spectral image (HSI) mixed-noise removal method named total
variation (TV)-regularized low-rank matrix factorization (LRTV).
In general, HSIs are not only assumed to lie in a low-rank subspace
from the spectral perspective but also assumed to be piecewise
smooth in the spatial dimension. The proposed method integrates
the nuclear norm, TV regularization, and L1-norm together in
a unified framework. The nuclear norm is used to exploit the
spectral low-rank property, and the TV regularization is adopted
to explore the spatial piecewise smooth structure of the HSI. At
the same time, the sparse noise, which includes stripes, impulse
noise, and dead pixels, is detected by the L1-norm regularization.
To tradeoff the nuclear norm and TV regularization and to further
remove the Gaussian noise of the HSI, we also restrict the rank of
the clean image to be no larger than the number of endmembers.
A number of experiments were conducted in both simulated and
real data conditions to illustrate the performance of the proposed
LRTV method for HSI restoration.

Index Terms—Hyperspectral image (HSI), low-rank matrix fac-
torization, rank constraint, restoration, total variation (TV).

I. INTRODUCTION

HYPERSPECTRAL image (HSI) data are acquired by high
spectral resolution sensors, and consist of hundreds of

contiguous narrow spectral band images. With the wealth of
available spectral information, hyperspectral imagery has been
found to be very useful for many remote sensing applications.
However, hyperspectral imaging sensors unavoidably introduce
noise into the acquired HSI data during the imaging process,
which severely degrades the quality of the imagery and limits
the precision of the subsequent processing, including classi-
fication [1], unmixing [2], [3], and target detection [4]. It is
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therefore an important preprocessing step to reduce the noise
in hyperspectral imagery.

To date, many different HSI denoising methods have been
proposed for the restoration of HSIs. HSI data contain hundreds
of spectral channels, and each channel can be regarded as a
gray-level image. On the other hand, each pixel can also be re-
garded as a 1-D signal. As a result, the simplest way is to utilize
the traditional 2-D or 1-D denoising methods to reduce noise in
the HSI band by band [5], [6] or pixel by pixel [7]. However,
this kind of processing method ignores the correlations between
different spectral bands or adjacent pixels and often results
in a relatively low-quality result. In recent years, a number
of algorithms have been proposed that combine the spatial
and spectral information for HSI noise removal. Othman and
Qian [8] proposed a hybrid spatial spectral derivative-domain
wavelet shrinkage model, which benefits from the dissimilarity
of the signal regularity in the spatial and spectral dimensions
of the HSI. By treating the HSI as a 3-D multidimensional data
cube, multidimensional Wiener filtering (MWF) [9], [10] and
high-order rank-1 tensor decomposition [11], which jointly take
into account the spatial spectral information, have also been
adopted to denoise HSIs. In [12], the nonlocal similarity and
spectral spatial structure of the hyperspectral imagery were
introduced into a sparse representation framework. To sum up,
all these spatial spectral methods have achieved comparable
denoising results.

Total variation (TV) regularization is a powerful method in
image processing. The TV-based algorithm is a very popular
denoising approach because of its effectiveness in preserving
edge information and the spatial piecewise smoothness [13],
[14]. Apart from the image denoising processing field, TV
regularization has been explored in many other image process-
ing fields, e.g., superresolution [15], segmentation, and image
reconstruction [16]. Recently, TV-based methods have also
been extended to HSI restoration. In [17], a spatial spectral TV
approach was used for HSI restoration. In [18], Kuiteing et al.
proposed an iterative TV architecture for HSI reconstruction.
Taking the spectral noise differences and the spatial information
differences into consideration, Yuan et al. [19] proposed an HSI
restoration algorithm employing a spectral spatial adaptive TV
(SSAHTV) model. Despite their good performance in image
processing, the TV-regularized methods still face some prob-
lems in impulse noise removal. Notably, TV regularization
negatively affects the values of the pixels that are not impulse
corrupted. To remedy this problem, two-phase methods have
been considered for natural images in several papers [20], [21].
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In these approaches, in the first phase, a median-type filter is
used to identify the impulse-corrupted (sparse noise) pixel set,
and in the second phase, the data-fidelity term of the model uti-
lizes only the uncorrupted pixels to restore the corrupted image.
A two-phase approach has also been used in HSI mixed-noise
removal [22] and achieved comparable results.

In recent years, low-rank matrix factorization has been
widely utilized as another powerful tool for image analysis, web
search, and computer vision [23]–[25]. The low-rank model de-
scribes the problem of finding and exploiting low-dimensional
structures in high-dimensional data. For an HSI, spectrally ad-
jacent bands typically exhibit strong correlations, and spatially
adjacent pixels in the HSI are also typically highly correlated,
which both reveal the low-rank structure of hyperspectral im-
agery. Based on this fact, low-rank matrix factorization has
recently been used in HSI denoising. One of the most famous
traditional low-rank-based methods is principal component
analysis (PCA) [26], which uses orthogonal transformation to
convert the hyperspectral imagery into a set of linearly uncor-
related variables called principal components (PCs). Unfortu-
nately, this classical method has two major drawbacks. First, it
is sensitive to outliers; however, HSIs are often contaminated
by outliers such as stripes, deadlines, impulse noise, and so
on. Second, it mainly exploits the correlation between spectral
bands, ignoring the spatial piecewise smoothness of local
neighborhood pixels. In [23], Candès et al. solved the first prob-
lem and proposed the robust PCA (RPCA) model. They mod-
eled the outliers as a sparse matrix and proved that, when the
rank of the low-dimensional matrix and the distribution of the
outlier matrix obey certain conditions, there is a high proba-
bility of recovering the low-rank matrix and the outlier matrix.
This strategy has been successfully used in HSI mixed-noise
removal [27]–[31] and has achieved state-of-the-art results. On
the other hand, embedded in the spatial information, the low-
rank model has been combined with other techniques to solve
the second issue by simultaneously utilizing both the spectral
and spatial information. In the method proposed in [32], PCA
is first applied to the HSI, and the low-variance PCs are subse-
quently filtered by a 2-D bivariate wavelet shrinkage, and then
by a 1-D dual-tree complex wavelet transformation, for each
pixel. In [33], Zhao et al. exploited sparse coding to model the
global redundancy and correlation (RAC) and the local RAC in
the spectral domain and then used a low-rank constraint to deal
with the global RAC in the spectral domain.

As we know, HSIs are often contaminated by several differ-
ent types of noise, e.g., Gaussian noise, impulse noise, dead
pixels, and stripes. In this paper, as in [27], we model impulse
noise, dead pixels, and stripes as sparse noise, and we propose
an HSI mixed-noise removal method by combining low-rank
matrix factorization and TV regularization. From one aspect,
the HSI is assumed to lie in a low-rank subspace, and the low-
rank matrix factorization-based method can be used to effi-
ciently separate the low-rank clean image and the sparse noise.
Unfortunately, this model cannot effectively remove the heavy
Gaussian noise because of the absence of an appropriate spatial
constraint. In addition, as the intensity of the Gaussian noise in-
creases, the effect of the low-rank and sparse matrix separation
may be significantly degraded. From another aspect, the HSI is

also assumed to be piecewise smooth in the spatial dimension,
and the TV-based method can be adopted to effectively remove
the Gaussian noise. These facts inspire us to integrate the low-
rank model and the TV model. The low-rank model is used to
capture the spectral correlations, and the TV regularization is
utilized to capture the spatial piecewise smooth structure. It is
worth mentioning that TV regularization combined with a low-
rank constraint strategy has recently been utilized in HSI recon-
struction [34] and fusion [35]. In this paper, we mainly focus on
HSI mixed-noise removal. The main contributions of this paper
are summarized as follows.

1) The low-rank matrix factorization model is studied and
applied to HSI processing. From the Bayesian perspec-
tive, we also build up the relationship between the low-
rank matrix factorization and the rank-constrained RPCA,
which can be solved efficiently for HSI restoration.

2) TV regularization is incorporated in the low-rank matrix
factorization model. The low-rank matrix factorization
model is used to separate the clean spectral signal from
the sparse noise, and the TV regularization is utilized
to remove the Gaussian noise and enhance the spatial
information.

3) The augmented Lagrange multiplier (ALM) [36]–[38]
method is utilized and extended to solve the proposed
model. The experimental results confirm that the pro-
posed method clearly improves the restoration results,
in comparison with some of the aforementioned tech-
niques, in both the quantitative evaluation and the visual
comparison.

The rest of this paper is organized as follows: In Section II,
the TV model is studied and applied to HSI restoration. The TV-
regularized low-rank matrix factorization (LRTV) model is in-
troduced in Section III. In Section IV, both simulated and real
data experiments are described and analyzed, and the conclu-
sions are drawn in Section V.

II. TV MODEL FOR HSI RESTORATION

A. HSI Degradation Model

Observed HSI data that are contaminated by mixed noise,
which are denoted by Y ∈ R

MN×p, can be modeled as follows:

Y = X+ S+N (1)

where Y = [Y1,Y2, . . . ,Yp], X = [X1,X2, . . . ,Xp], S =
[S1,S2, . . . ,Sp], and N = [N1,N2, . . . ,Np] are the Casorati
matrices (a matrix whose columns comprise vectorized bands
of the HSI) of the degraded HSI u ∈ R

M×N×p, the clean
image f ∈ R

M×N×p, the sparse noise image s ∈ R
M×N×p,

and the Gaussian noise image N ∈ R
M×N×p, respectively. The

purpose of HSI restoration is to estimate the clean image X
from the noisy image Y.

B. MAP Restoration Model

In recent years, the maximum a posteriori (MAP) estima-
tion theory, which inherently includes prior constraints in the
form of prior probability density functions, has been attracting
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attention and enjoying increasing popularity. It describes an ill-
posed inverse problem and has been widely used in image pro-
cessing [19]. Based on MAP estimation theory, the restoration
model for an HSI can be described as the following constrained
least squares problem:

X̂ = argmin
X∈Rm×n

{
‖Y −X‖2F + τR(X)

}
(2)

where Y and X are described as before; ‖Y −X‖2F is the data-
fidelity term, which represents the distance between the ob-
served noisy image Y and the original clear image X; and
R(X) is the regularization term, which gives a prior model of
the original clear HSI. τ is the regularization parameter used to
balance the tradeoff between the fidelity term and the regular-
ization term.

C. TV-Based HSI Restoration

The TV model was first proposed by Rudin et al. [39] to solve
the gray-level image denoising problem because of its ability to
effectively preserve edge information and promote piecewise
smoothness. For a gray-level image x of size M ×N , the
anisotropic TV norm [40] is defined as follows:

‖x‖TV =
M−1∑
i=1

N−1∑
j=1

{|xi,j − xi+1,j |+ |xi,j − xi,j+1|}

+

M−1∑
i=1

|xi,N − xi+1,N |+
N−1∑
j=1

|xM,j − xM,j+1|. (3)

It is easy to extend this gray-level TV norm to an HSI in a
band-by-band manner. That is, every band of the HSI is treated
as a gray-level image. The TV norm is then applied to each
band, respectively, and then added together. This simple band-
by-band HSI TV norm is defined as follows:

‖X‖HTV =

p∑
j=1

‖FXj‖TV (4)

in which Xj represents the vector of the jth band of the HSI,
and F : RMN → R

M×N denotes the operator that reshapes the
vector of the jth band back into the 2-D M ×N image.

After defining the TV norm of the HSI, we can treat it as
a prior and incorporate it in the MAP estimation (2). The HSI
restoration model can then be written as follows:

X̂ = argmin
X∈Rm×n

{
‖Y −X‖2F + τ‖X‖HTV

}
. (5)

For an HSI, it is often corrupted by mixed noise, including
Gaussian noise and sparse noise. In this case, it is inappropriate
to impose the data-fidelity term on all the space. If the sparse
noise candidate set is denoted by Ω, then the TV-based HSI
restoration model can be rewritten as follows [20]:

X̂ = argmin
X∈Rm×n

{
‖PΩT (Y −X)‖2F + τ‖X‖HTV

}
(6)

where ΩT is the complementary space of Ω, and PΩT is the or-
thogonal projector onto the span of the matrices vanishing in Ω.

Fig. 1. Spatial and spectral perspectives of HSI data.

In addition, if we exactly know the sparse noise and denote it
by S, the TV model (6) can be written as follows:

X̂ = argmin
X∈Rm×n

{
‖Y −X− S‖2F + τ‖X‖HTV

}
. (7)

By carefully choosing the regularization parameter τ , model (7)
is equal to the constrained TV model

X̂ = argmin
X∈Rm×n

‖X‖HTV s.t. ‖Y −X− S‖2F ≤ ε (8)

in which ε represents the noise level of the Gaussian noise.

III. LRTV FOR HSI RESTORATION

In [27], it is well known that the low-rank-based method
achieves an excellent sparse noise removal performance. How-
ever, as presented in [30], the method cannot completely re-
move Gaussian noise, which is independently distributed on
each pixel of the HSI. Furthermore, when the sparse noise is
structured, the sparse part may be treated as the low-rank part,
significantly reducing the performance of the low-rank and
sparse matrix separation. In this part, we incorporate the TV
regularization into the low-rank matrix factorization-based HSI
restoration model to explore the spatial piecewise smooth struc-
ture of the HSI, as presented in Fig. 1. Unlike the two-phase
method proposed in [22], we combine the low-rank constraint
and the TV regularization together in a unified mathematical
framework and simultaneously detect the sparse noise and
restore the HSI.

A. Low-Rank Matrix Factorization-Based HSI Restoration

As we know, HSI data are highly structured, i.e., the HSI lies
in a low-dimensional space. From the perspective of the linear
spectral mixing model, each spectral signature (row of X) can
be represented by a linear combination of a small number of
pure spectral endmembers, as shown in Fig. 1. This inspires us
to use the low-rank matrix factorization to model the HSI degra-
dation as follows:

Y = UV + S+N (9)

in which U ∈ R
m×r represents the endmember matrix or

“dictionary,” V ∈ R
r×n can be regarded as the abundance or

“coefficient” matrix, UVis the low-rank matrix factorization
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of the original clean image, and r is considered as the number
of endmembers.

Next, we study the low-rank matrix factorization from a
probabilistic perspective and build up the low-rank matrix
factorization-based HSI restoration model. Differing from the
linear spectral mixing model, in the low-rank matrix factoriza-
tion model, we assume that U is a random dictionary. In addi-
tion, the coefficient values of the matrix V are also assumed
to be randomly distributed. These assumptions have been
adopted in probabilistic matrix factorization [41] and Bayesian
RPCA [42].

Low-rank matrix factorization (9) has been widely used in
image processing and analysis [24], [25]. In model (9), we
assume that each element of U ∈ R

m×r,V ∈ R
r×n is sampled

from the Gaussian distribution, the sparse error S is sam-
pled from the Laplace distribution, and the noise G obeys a
Gaussian distribution. From the probabilistic view, we have the
following:

Uij ∼ N
(
0, λ−1

u

)
(10)

Vij ∼ N
(
0, λ−1

v

)
(11)

Sij ∼ L
(
0, λ−1

s

)
(12)

Gij ∼ N
(
0, λ−1

g

)
. (13)

By treating U, V, and S as model parameters, and λu, λv ,
λs, and λg as hyperparameters with fixed values, we use the
Bayesian estimation to find U, V, and S. From Bayes’ rule, we
have the following MAP formulation:

p(U,V,S|Y, λu, λv, λs, λg)

∝ p(Y|U,V,S, λg)p(U|λu)p(V|λv)p(S|λs). (14)

Thus

log p(U,V,S|Y, λu, λv, λs, λg) = −λg

2
‖Y −UV − S‖2F

− λs‖S‖1 −
λu

2
‖U‖2F − λv

2
‖V‖2F − C (15)

where C is a constant term independent of U, V, and S. If we
set λ = λs/λg , λ′

u = λu/λg , and λ′
v = λv/λg, then the MAP

estimation is equivalent to the following restoration model:

min
U,V,S

1

2
‖Y −UV − S‖2F + λ‖S‖1 +

λ′
u

2
‖U‖2F +

λ′
v

2
‖V‖2F .

(16)

We can then further simplify the low-rank matrix factoriza-
tion model (16) and deduce the rank-constrained RPCA model
under certain conditions. First of all, we introduce a fact, which
describes the relationship between the nuclear norm and the
L2-norm of the two factor matrices.

Lemma 1: For any matrix X ∈ R
m×n, the following concept

holds:

‖X‖∗ = min
U,V,L=UV

1

2

(
‖U‖2F + ‖V‖2F

)
.

If rank(X) = r ≤ min{m,n}, then the aforementioned mini-
mum is attained at a factor decomposition X = UV, where
U ∈ R

m×r and V ∈ R
r×n.

The proof of Lemma 1 can be found in [43] and [44].
If we assume that λ′

u = λ′
v = λ2 and the rank upper bound is

r [i.e., U ∈ R
m×r and V ∈ R

r×n in (16)], then we can imme-
diately deduce the following result using Lemma 1:

min
U,V,S

1

2
‖Y −UV − S‖2F + λ‖S‖1 +

λ2

2
‖U‖2F +

λ2

2
‖V‖2F

= min
U,V,S

1

2
‖Y −UV − S‖2F + λ‖S‖1 + λ2 (‖UV‖∗)

= min
X,S,rank(X)≤r

1

2
‖Y−X−S‖2F+λ‖S‖1 + λ2 (‖X‖∗) .

(17)

From (17), we can see that the low-rank matrix factorization
restoration model (16) is the Lagrangian formalism of the rank-
constrained RPCA model, which is presented as follows:

min
X,S∈Rm×n

‖X‖∗+λ‖S‖1 s.t. ‖Y−X−S‖2F ≤ε, rank(X) ≤ r

(18)

in which ε represents the noise variance. Compared to the
existing RPCA model [23], [27], it can be clearly observed that
the constraint of the rank of the clean image being no larger than
the number of endmembers is added in model (18). The rank
of the matrixX, which is an intrinsic feature of an HSI image, is
very meaningful in the HSI restoration process. Unfortunately,
in the case of the HSI being heavily corrupted by Gaussian
noise, as the nuclear norm is just an approximation of the rank
constraint, the minimizer of the RPCA model may not be low
rank. By restricting the rank of the clean image to be no larger
than the number of endmembers, model (18) can help to further
remove the noise.

While the rank-constrained RPCA model (18) is nonconvex
because of the inclusion of the rank constraint, it can be
solved by the ALM-based method. More details about this issue
can be found in [36]. On the other hand, model (18) can be
deduced from the low-rank matrix factorization model (16).
Therefore, the low-rank matrix factorization observation model
(9) is used to describe the HSI degradation process, and the
rank-constrained RPCA optimization model (18) is adopted to
restore the HSI. In addition, we also call model (18) “low-rank
matrix factorization” because of their equivalence.

B. LRTV for HSI Restoration

From the perspective of the low-rank matrix factorization
model (18), it can perfectly decompose the observed image
into the low-rank image and sparse noise image. However, un-
fortunately, it cannot efficiently remove heavy Gaussian noise
because of the absence of an appropriate spatial constraint.
Furthermore, this low-rank matrix factorization model can only
separate the sparse noise from the observed image in the case
of the locations of the sparse noise being randomly distributed
[23]. That is, for HSI data, if the stripes are located in the same
place in all the bands, the low-rank matrix factorization model
(18) will fail to detect these stripes and will regard the sparse
noise as the low-rank component. On the other hand, from the
perspective of the TV model (8), it can significantly preserve
the edge information and piecewise smooth structure. However,
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the spectral similarity is neglected, and the values or the loca-
tions of the sparse noise need to be predefined. All the afore-
mentioned issues inspire us to integrate the two complementary
models to restore the HSI. We can then carry out the following
LRTV restoration model:

min
X,S∈Rm×n

‖X‖∗ + τ‖X‖HTV + λ‖S‖1

s.t. ‖Y −X− S‖2F ≤ ε, rank(X) ≤ r (19)

where τ is the parameter used to control the tradeoff between
the nuclear norm and the TV norm, and λ is the parameter used
to restrict the sparsity of the sparse noise. In the LRTV model,
when τ is set to zero, the optimization (19) is degraded into a
low-rank matrix regularization model (18).

The LRTV model (19) can simultaneously capture the spatial
and spectral information of the HSI. The low-rank constraint
can make use of the spectral similarity of all the pixels and can
provide the sparse noise information when combined with the
sparsity constraint. After the sparse noise is confirmed, the TV
regularization can be used to capture the spatial information and
enhance the piecewise smooth structure of each band and, as a
result, promote the removal of the Gaussian noise. This will, in
return, help to decompose the low-rank image and the sparse
noise. As the iteration progresses, we progressively separate
the sparse noise from the observed image and obtain a restored
image with the spectral structure of spectral similarity and the
spatial structure of piecewise smoothness.

C. Optimization Procedure

The optimization problem (19) can be solved by various
methods. For efficiency, we adopt the ALM [36] method in this
paper. We first convert (19) to the following equivalent problem:

min
L,X,S∈Rm×n

‖L‖∗ + τ‖X‖HTV + λ‖S‖1

s.t. ‖Y−L−S‖2F ≤ ε, rank(L) ≤ r, L = X. (20)

This problem can be solved by the ALM method, which mini-
mizes the following augmented Lagrangian function:

min �(L,X,S,Λ1,Λ2) = min
X,S,L,Λ1,Λ2

‖L‖∗+τ‖X‖HTV+λ‖S‖1

+ 〈Λ1,Y − L− S〉+ 〈Λ2,X− L〉
+

μ

2

(
‖Y − L− S‖2F+‖X− L‖2F

)
s.t. rank(L) ≤ r (21)

where μ is the penalty parameter, and Λ1 and Λ2are the La-
grange multipliers.

A natural way to solve the problem is to iteratively optimize
the augmented Lagrangian function (21) over one variable,
while fixing the others. Specifically, in the k + 1th iteration, we
update the variables as follows:

L(k+1) = argmin
rank(L)≤r

�
(
L,X(k),S(k),Λ

(k)
1 ,Λ

(k)
2

)
(22a)

X(k+1) = argmin
X

�
(
L(k+1),X,S(k),Λ

(k)
1 ,Λ

(k)
2

)
(22b)

S(k+1) = argmin
S

�
(
L(k+1),X(k+1),S,Λ

(k)
1 ,Λ

(k)
2

)
(22c)

Λ
(k+1)
1 =Λ

(k)
1 + μ

(
Y − L(k+1) − S(k+1)

)
(22d)

Λ
(k+1)
2 =Λ

(k)
2 + μ

(
X(k+1) − L(k+1)

)
. (22e)

The optimization problem is now divided into three major
subproblems presented in (22a)–(22c). For (22a), we can de-
duce that

L(k+1) = argmin
rank(L)≤r

�
(
L,X(k),S(k),Λ

(k)
1 ,Λ

(k)
2

)
= argmin

rank(L)≤r

‖L‖∗+
〈
Λ
(k)
1 ,Y−L−S(k)

〉
+
〈
Λ
(k)
2 ,X(k)−L

〉

+
μ

2

(∥∥∥Y − L− S(k)
∥∥∥2
F
+
∥∥∥X(k) − L

∥∥∥2

F

)

= argmin
rank(L)≤r

‖L‖∗+μ

∥∥∥∥L− 1

2

(
Y +X(k) − S(k)

+
(
Λ
(k)
1 +Λ

(k)
2

)
/μ

)∥∥∥∥
2

F

.

(23)

The step for updating L can be solved by the following
Lemma 2.

Lemma 2 [45]: Let W ∈ R
MN×p be a given matrix, then the

singular value decomposition (SVD) of a matrix W of rank r
is defined as follows:

W = UErV
∗, Er = diag ({σi}1≤i≤r) . (24)

The singular value shrinkage operator then obeys

Dδ(W) = argmin
rank(L)≤r

δ‖L‖∗ +
1

2
‖L−W‖2F (25)

where

Dδ(W) = UDδ(Er)V
∗, Dδ(Er)=diag {max ((σi − δ), 0)} .

By using Lemma 2, we can easily obtain the following opti-
mization result of (23):

L(k+1) = D 1
(2μ)

(
1

2

(
Y+X(k)−S(k)+

(
Λ
(k)
1 +Λ

(k)
2

)
/μ)

))
.

(26)

As to subproblem (22b), we have the following:

X(k+1) = argmin
X

�
(
L(k+1),X,S(k),Λ

(k)
1 ,Λ

(k)
2

)
= argmin

X
τ‖X‖HTV +

〈
Λ
(k)
2 ,X− L(k+1)

〉
+

μ

2

∥∥∥X− L(k+1)
∥∥∥2
F

= argmin
X

τ‖X‖HTV +
μ

2

∥∥∥∥∥X− L(k+1) +
Λ
(k)
2

μ

∥∥∥∥∥
2

F

.

(27)

We define Q=L(k+1)−(Λ
(k)
2 /μ) and Q=[Q1, Q2, . . . , Qp] ∈

R
MN×p, where optimization (27) can be split into p
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subproblems, and each subproblem is to solve

X
(k+1)
j = argmin

Xj

τ

μ
‖HXj‖TV +

1

2
‖Xj −Qj‖2. (28)

In this paper, we use the fast gradient-based algorithm intro-
duced in [40] to solve (28). For the third subproblem (22c), we
have the following:

S(k+1) = argmin
S

�
(
L(k+1),X(k+1),S,Λ

(k)
1 ,Λ

(k)
2

)
= argmin

S
λ‖S‖1 +

〈
Λ
(k)
1 ,Y − L(k+1) − S

〉
+

μ

2

∥∥∥Y − L(k+1) − S
∥∥∥2
F

= argmin
S

λ‖S‖1+
μ

2

∥∥∥∥∥S−
(
Y−L(k+1)+

Λ
(k)
1

μ

)∥∥∥∥∥
2

F

.

(29)

By introducing the following soft-thresholding (shrinkage)
operator:

�Δ(x) =

⎧⎨
⎩
x−Δ, if x > Δ
x+Δ, if x > Δ
0, otherwise

(30)

where x ∈ R and Δ > 0, the optimization of (29) can be
expressed as follows:

S(k+1) = �λ
μ

(
Y − L(k+1) +

Λ
(k)
1

μ

)
. (31)

Summarizing the aforementioned description, we arrive at an
augmented Lagrangian alternating direction method to solve the
LRTV model, as presented in Algorithm 1.

Algorithm 1 LRTV solver

Input: MN × p matrix Y, desired rank r, stopping criteria
ε1 and ε2, and regularized parameters τ and λ

Output: Restored image X
Initialize: L=X=S=0, Λ1=Λ2=0, μ=10−2, μmax=106,

ρ = 1.5 and k = 0
Repeat until convergence

Update L(k+1), X(k+1), S(k+1), Λ(k+1)
1 , and Λ

(k+1)
2 via (22)

Update the parameter μ := min(ρμ, μmax)
Check the convergence conditions

‖Y−L(k+1)−S(k+1)‖F/‖Y‖F ≤ε1 and ‖L(k+1)−X(k+1)‖∞≤ε2

In the LRTV solver, the inputs are the noisy image Y ∈
R

MN×p, the desired rank r, the stopping criteria ε1 and ε2, and
the regularized parameters τ and λ. The output is the clean im-
ageX ∈ R

MN×p. In addition, the initializations of the variables
are important. As in [37], we initialize L = X = S = 0, Λ1 =
Λ2 = 0. For variable μ shown in the augmented Lagrangian
function (21), we initialize it as 10−2 and update it as μ :=
min(ρμ, μmax) in each iteration step. This strategy of deter-
mining the variable μ has been widely used in the ALM-based
methods, which can support the convergence of the algorithm
[36], [37], [46].

D. Parameter Determination

As presented in Algorithm 1, the desired rank r, the stopping
criteria ε1 and ε2, and the regularized parameters τ and λ need
to be determined as prior knowledge. In all the experiments, we
set λ = 1/

√
MN and ε1 = ε2 = 10−8. What we need to dis-

cuss is the desired rank r and the regularized parameter τ .
The desired rank r represents the number of endmembers in

the HSI. Unfortunately, it is not easy to directly obtain the num-
ber of endmembers in real HSI processing. In this case, we re-
sort to the HSI subspace identification method called HySime,
as proposed in [47], to estimate the number of endmembers.

The regularized parameter τ is used to control the tradeoff
between the nuclear norm and the TV norm. When τ is set to
zero, the optimization (19) is degraded into the low-rank matrix
regularization model (18). From (28), it seems that the TV
regularization is mainly influenced by the value of τ/μ. How-
ever, as the iteration progresses in the LRTV solver, τ/μ → 0
as μ → +∞. That is, the role of the TV regularization is getting
smaller. As a result, τ has a slight relationship with the initial
value of μ. In the experiments, we set τ = 0.01.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Both simulated and real image data experiments were under-
taken to demonstrate the effectiveness of the LRTV method for
HSI restoration. To thoroughly evaluate the performance of the
proposed algorithm, we selected two different noise removal
methods for comparison, i.e., the SSAHTV model [19] and the
low-rank matrix recovery (LRMR) model [27]. SSAHTV is
one of the state-of-the-art TV-based HSI restoration methods,
and LRMR is a state-of-the-art low-rank-based method. In all
the simulated experiments, the parameters in SSAHTV and
LRMR were manually adjusted to the optimal. In the real
data experiments, we first resorted to the parameter selection
methods in [19] and [27], and we then fine tuned the parameters
and chose the ones that corresponded to the best visual results.
In addition, the gray values of each HSI band were normalized
to [0, 1], as in [19] and [27].

A. Simulated Data Experiments for Mixed-Noise Removal

The synthetic data were generated using the ground truth
of the Indian Pines data set [48], and the spectral signatures
were extracted from the USGS digital spectral library [49]. We
assigned the pixels of the same label with a specific signature
from the spectral library. All the unlabeled pixels were also
replaced by the same signature. In total, we replaced 16 classes
of labeled pixels and all the unlabeled pixels with the
17th signature from the spectral library. The size of the syn-
thetic image was 145× 145× 224. The reflectance values of
all the voxels in the HSI were linearly mapped to [0, 1]. The
synthetic HSI data can be considered as clean data [12].

To simulate a noisy image, we added Gaussian noise and salt-
and-pepper impulse noise to all the bands of the simulated clean
HSI, as the following two cases:

Case 1) For different bands, the noise intensity was equal.
In this case, the same distribution of zero-mean
Gaussian noise and the same percentage of impulse
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TABLE I
QUANTITATIVE EVALUATION OF THE DIFFERENT RESTORATION

ALGORITHMS WITH THE SIMULATED DATA IN CASE 1

noise were added to each band. The variances of the
Gaussian noise wereG=0.025, 0.05, 0.075, and 0.1,
respectively, and the percentages of the impulse noise
were P = 0.05, 0.1, 0.15, and 0.2, respectively.

Case 2) For different bands, the noise intensity was different.
In this case, different variance zero-mean Gaussian
noise was added to each band, with the variance
value being randomly selected from 0 to 0.2, and
different percentages of impulse noise were added,
which were randomly selected from 0 to 0.2. In
the simulated experiments, as the SSAHTV method
does not remove impulse noise, we first used RPCA
to filter the impulse noise, and then, SSAHTV was
applied to the low-rank part of the RPCA model. We
denote this restoration method as RPCA-SSAHTV.
After restoring the image, the peak signal-to-noise
ratio (PSNR) index and the structural similarity
(SSIM) index [50] were adopted to give a quan-
titative assessment for the results of the simulated
image experiments. For the HSI, we computed the
PSNR and SSIM values, between each noise-free
band and denoised band, and then averaged them.
These metrics are denoted as MPSNR (mean PSNR)
and MSSIM (mean SSIM). In order to evaluate the
spectral fidelity of the denoising result, the mean
spectral angle (MSA) index was also used.

The restoration results of the different algorithms for the syn-
thetic HSI data in Case 1 are presented in Table I. The best
results for each quality index are labeled in bold, and the second-
best results for each quality index are underlined. Here, it is
clear that the proposed method provides the highest values in
both MPSNR and MSSIM and the lowest MSA, which confirms
the advantage of the proposed method over the other methods.

For Case 2, we first present some typical bands of the syn-
thetic HSI data before and after restoration. Fig. 2 shows the
false-color composite of the synthetic image. By comparing the
restoration results of the four different methods, it can be clearly
seen that LRTV performs best, effectively suppressing the noise
while preserving the spectral information. SSAHTV introduces
artifacts, and the restored image is blurred. LRMR can more or
less remove the noise and preserve the spectral information, but

Fig. 2. Restoration results in the simulated experiments in Case 2. (a) Original
false-color image (R: 6, G: 88, B: 221). (b) Noisy band. (c) SSAHTV. (d)
RPCA-SSAHTV. (e) LRMR. (f) LRTV.

TABLE II
QUANTITATIVE EVALUATION OF THE DIFFERENT RESTORATION

ALGORITHMS WITH THE SIMULATED DATA IN CASE 2

the removal of the Gaussian noise is not complete. The result of
RPCA-SSAHTV perfectly preserves the spatial structure of the
image. This is mainly because the impulse noise is filtered by
RPCA, and the spatial information is fully restored by the TV-
based method. However, the major disadvantage of this method
is that the spectral deformation is serious, e.g., as shown in
the red rectangles in Fig. 2(d) and (f). The advantages and
disadvantages of RPCA-SSAHTV are indicated in Table II,
which presents the quantitative assessment of all the restoration
results. In Table II, the MSSIM value of RPCA-SSAHTV is
comparable to that of LRTV, which is due to the fact that the
SSIM is a quality assessment measure based on the degradation
of the structural information. However, the MPSNR value of the
RPCA-SSAHTV results is even lower than that of LRMR. As to
the MSA values, which suggest the extent of the spectral distor-
tion, the results of the RPCA-SSAHTV and LRMR methods are
comparable, they are much better than the results of SSAHTV,
and they are significantly inferior to the results of the LRTV
method. On the whole, the experimental results of LRTV are the
best, in both the visual assessment in Fig. 2 and the quantitative
assessment in Table II. This is mainly because LRTV employs
structural information in the TV regularization and the spectral
similarity in the low-rank constraint. We also show the PSNR
and SSIM values of each band in the Case 2 experiment in
Fig. 3. Here, LRTV achieves the best PSNR and SSIM va-
lues in almost all the bands, further indicating that the proposed
method outperforms the other methods in HSI restoration.

To further compare the performances of all the restoration al-
gorithms, we also show the spectral signatures before and after
restoration. Fig. 4 shows the spectral signatures of pixel (100,
100). Combined with the quantitative assessment of the MSA
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Fig. 3. PSNR and SSIM values of each band of the experimental results in
Case 2. (a) PSNR values. (b) SSIM values.

Fig. 4. Spectrum of pixel (100, 100) in the restoration results: (a) original,
(b) noisy, (c) SSAHTV, (d) RPCA-SSAHTV, (e) LRMR, and (f) LRTV.

values presented in Tables I and II, it can be clearly seen that the
proposed LRTV method produces the best spectral signature.

B. Real Data Experiments

Three real-world HSI data sets were also used in our exper-
iments: the Hyperspectral Digital Imagery Collection Experi-
ment (HYDICE) urban data set, the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) Indian Pines data set, and
an Earth Observing-1 (EO-1) Hyperion data set. Before the
restoration process, the gray values of each HSI band were
normalized to [0, 1]. In the real data experiment, SSAHTV per-
formed similarly to the RPCA-SSAHTV method because the
impulse noise was not so serious in the real-world image.
Therefore, only SSAHTV and LRMR were adopted as com-
parison methods.

Fig. 5. HYDICE urban data set used in real data experiment 1.

1) HYDICE Urban Data Set: The HYDICE urban image
can be downloaded online at [51]. The original image is 307×
307× 210 in size, and we selected a subimage of size 200×
200× 210 for our experiment. The urban image presented in
Fig. 5 is polluted by stripes, deadlines, the atmosphere, water
absorption, and other unknown noise. In this first real data
experiment, for LRMR, the parameters were set as r = 4 and
k = 4000. For the SSAHTV method, the regularization param-
eter was set to 3.

Figs. 6 and 7 present bands 103 and 206 of the restored im-
ages. From the results, we can see that the SSAHTV method can
more or less remove the stripes, but it causes the restored results
to be oversmooth. In addition, some local details are distorted,
as shown in Fig. 7. LRMR cannot effectively remove the stripes
in Fig. 7. This is mainly because of the fact that the stripes exist
in the same place from bands 199 to 210. That is, in the low-
rank and sparse decomposition, the stripes are regarded as the
low-rank part, which is assumed to be the clean image. Com-
pared to LRMR, LRTV uses the TV regularization to mine the
spatial information and can significantly reduce this kind of
stripes. Overall, the results show that LRTV performs best.

Fig. 8 shows the horizontal mean profiles of band 206 before
and after restoration. The horizontal axis in Fig. 8 represents the
row number, and the vertical axis represents the mean digital
number value of each row. As shown in Fig. 8(a), due to the ex-
istence of mixed noise, there are rapid fluctuations in the curve.
After the restoration processing, the fluctuations are more or
less suppressed. Here, the LRTV method appears to perform
best. This is in accordance with the visual results presented
in Fig. 7, which show that LRMR fails to restore most of
the stripes. In Fig. 8, SSAHTV achieves comparable results to
LRTV. However, we suspect that the result of SSAHTV is over-
smooth, as deduced from the performance in Fig. 7(b).

2) AVIRIS Indian Pines Data Set: The Indian Pines data set
[48] was used in the second experiment. This data set was ac-
quired by the NASA AVIRIS instrument over the Indian Pines
test site in Northwestern Indiana in 1992, and the size is 145 ×
145 pixels and 220 bands. Fig. 9 shows the color image by
combining bands 3, 147, and 219. In this real data experiment,
the parameters of LRMR were set as r = 5 and k = 4000. The
regularization parameter λ of SSAHTV was set to 3.

The Indian Pines data set is mainly corrupted by the atmo-
sphere and water absorption. The first few bands and the last
few bands are also seriously polluted by Gaussian noise and
impulse noise. Figs. 10 and 11 present the restoration results of
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Fig. 6. Restoration results of band 103 in real data experiment 1. (a) Original. (b) SSAHTV. (c) LRMR. (d) LRTV.

Fig. 7. Restoration results of band 206 in real data experiment 1. (a) Original. (b) SSAHTV. (c) LRMR. (d) LRTV.

Fig. 8. Horizontal mean profiles of band 206 in real data experiment 1. (a) Original. (b) SSAHTV. (c) LRMR. (d) LRTV.

Fig. 9. AVIRIS Indian Pines data set used in real data experiment 2.

bands 1 and 220 by the different restoration methods. Here, it
can be clearly observed that SSAHTV fails to restore the image,
as it is not suitable for the removal of heavy impulse noise.
LRMR can remove some of the noise, but some dense noise still
exists in the restored result. LRTV performs best, effectively
suppressing the Gaussian noise and simultaneously keeping the
local details and structural information of the image.

3) EO-1 Hyperion Data Set: The third real data experiment
adopted an EO-1 Hyperion image as the test image [52]. The ori-
ginal image was 400× 1000× 242 in size, and a subset of
size 200× 200× 166 was used after the removal of water
absorption bands. The image is shown in Fig. 12. In the experi-
ment, the parameters of LRMR were set as r=6 and k=4000.
For the SSAHTV method, the regularization parameter was
set to 3.

This Hyperion data set is mainly corrupted by stripes and
deadlines. We display the restoration results of band 1 and band
156 in Figs. 13 and 14, respectively. From the visual results
presented in Figs. 13 and 14, it can be clearly observed that
the proposed LRTV method achieves the best performance.
SSAHTV fails to restore most of the stripes. Meanwhile, the
restoration result of SSAHTV is also oversmoothed, and most
of the details are lost. LRMR also fails to restore some stripes.
This is mainly because these stripes exist in the same place in
most of the noisy HSI bands and are treated as the low-rank
clean image in the LRMR processing. The proposed LRTV
method achieves the best results in stripe and deadline removal.
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Fig. 10. Restoration results of band 1 in real data experiment 2. (a) Original. (b) SSAHTV. (c) LRMR. (d) LRTV.

Fig. 11. Restoration results of band 220 in real data experiment 2. (a) Original. (b) SSAHTV. (c) LRMR. (d) LRTV.

Fig. 12. EO-1 Hyperion data set used in real data experiment 3.

At the same time, the details are also preserved, as presented in
Figs. 13(d) and 14(d).

We also present the vertical mean profiles of band 165 before
and after restoration. The rapid fluctuations in Fig. 15(a) sug-
gest the existence of stripes and deadlines in band 1. Here, it can
again be clearly observed that theLRTV restoration method gives
the best result among all the restored vertical mean profiles.

C. Discussion

In all the experiments with the LRTV method, we set the TV
regularization parameter and the sparsity regularization parame-
ter as τ=10−2 andλ=1/

√
MN , respectively, and used HySime

to estimate the desired rank. In this part, we explain the reasons
for choosing these parameter settings, and we present the con-
vergence of the LRTVsolver with the tested data set.All the expe-
riments were based on the simulated data experiment in Case 2.

1) Sensitivity Analysis of Parameter τ : In the LRTV solver,
parameter τ is adopted to control the tradeoff between the low-

Fig. 13. Restoration results of band 1 in real data experiment 3. (a) Original.
(b) SSAHTV. (c) LRMR. (d) LRTV.

rank constraint and the TV regularization. When τ is larger,
the power of the TV regularization is stronger, and vice versa.
When τ is set to zero, the LRTV solver reduces to low-rank ma-
trix factorization optimization. Fig. 16 presents the MPSNR and
MSSIM values with the change of parameter τ . τ was selected
from the set of [0, 0.001, 0.004, 0.007, 0.01, 0.02, 0.04, 0.07,
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Fig. 14. Restoration results of band 165 in real data experiment 3. (a) Original. (b) SSAHTV. (c) LRMR. (d) LRTV.

Fig. 15. Vertical mean profiles of band 1 in the real data experiment 3. (a) Original. (b) SSAHTV. (c) LRMR. (d) LRTV.

Fig. 16. Sensitivity analysis of parameter τ (τ from 0 to 0.1). (a) Change in
the MPSNR value. (b) Change in the MSSIM value.

Fig. 17. Sensitivity analysis of parameter λ (q from 0.1 to 20 with λ = q/√
MN ). (a) Change in the MPSNR value. (b) Change in the MSSIM value.

0.1]. In Fig. 16, it can be observed that, when τ = 0, the MP-
SNR and MSSIM values are lower than the case of τ > 0. This
indicates the positive function of the TV regularization. When
τ grows close to 0.01, the LRTV solver obtains the highest
MPSNR and MSSIM values.

2) Sensitivity Analysis of Parameter λ: In the LRTV solver,
λ is the parameter used to restrict the sparsity of the sparse
noise. As in the RPCA model presented in [23], the sparsity
regularization parameter was set to λ = 1/

√
MN , which was

enough to guarantee the existence of an optimal solution. In the
LRTV solver, this sparsity regularization parameter was also set
to λ = 1/

√
MN . In Fig. 17, we set λ = q/

√
MN and changed

Fig. 18. Sensitivity analysis of the rank constraint (rank estimated from 6 to
50). (a) Change in the MPSNR value. (b) Change in the MSSIM value.

q from the set of [0.1, 0.3, 0.5, 0.7, 1, 2, 4, 6, 8, 10, 20]. From
the figure, it can be observed that the results of the LRTV solver
are relatively stable, in both MPSNR and MSSIM values, when
q was changed from 0.7 to 20. Therefore, we did not tune pa-
rameter λ, but we adopted the default value, as analyzed in [23].

3) Effectiveness of the Rank Constraint: In the LRTV op-
timization (19), although the nuclear norm is a slack operator
of the rank minimization, we also add the rank constraint to
the clean image. Compared to the RPCA model, the rank of
the output clean image is sensitive to the TV regularization.
Fig. 18 presents the MPSNR and MSSIM values of the LRTV
solver with different rank-constrained values. In Fig. 18, it can
be observed that the MPSNR and MSSIM values first grow and
then drop with the growth in the estimated rank value. In addi-
tion, when the estimated rank was set to 224 (rownumbersofX),
the low-rank constraint was severely weakened and the LRTV
solver reduces to the band-by-band TV restoration method. In
another aspect, the LRTV solver achieved comparable results,
when the estimated rank was set to close to the number of end-
members. This inspired us to use the HSI subspace estimation
method (e.g., HySime) to estimate the desired rank value.

4) Convergence of the LRTV Solver: Fig. 19 presents the
MPSNR and MSSIM gains versus the iteration number of the
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Fig. 19. MPSNR and MSSIM values versus the iteration number of the LRTV
solver. (a) MPSNR values of each iteration in Case 2 for the simulated data.
(b) MSSIM values.

LRTV solver in Case 2 of the simulated experiment. Here, we can
observe that, as the iteration progresses, the MPSNR and MSSIM
values of the proposed method converge. This illustrates the con-
vergent behavior of the proposed method with the tested data set.

V. CONCLUSION

In this paper, we have proposed a LRTV method for HSI
mixed-noise removal. In the LRTV model, the low-rank con-
straint is utilized to effectively remove the sparse noise, by
exploring the spectral similarity. Meanwhile, the TV regular-
ization is adopted to preserve the local details and to further
remove the Gaussian noise, by exploiting the spatial structure
information. The low-rank constraint and the TV regulariza-
tion are integrated into a unified framework and complement
each other. The low-rank and sparse matrix decomposition can
provide the sparse noise components for the TV regularization
denoising. With the sparse noise information confirmed, the
TV regularization can provide an enhanced clean image, and
in return helps with the separation of the low-rank and sparse
matrices. Furthermore, to tradeoff the low-rank constraint and
the TV regularization, and to further remove the Gaussian noise
of the HSI, a rank constraint, which denotes the number of
endmembers, is added to the clean image. The proposed method
was compared with other state-of-the-art restoration methods
in several experiments, where LRTV performed best, in both
visual and quantitative assessments.

Despite the good performance of the LRTV solver, it does
have some room for further improvement. In the experiments,
we added the same value of parameter to all the bands of the
HSI. However, as introduced in [19], the noise intensity of
different bands should be different. That is, a noise-adjusted
TV regularization combined with a low-rank constraint will be
studied in the future.
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